9s^2+42s-49=

Simple and best practice solution for 9s^2+42s-49= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9s^2+42s-49= equation:


Simplifying
9s2 + 42s + -49 = 0

Reorder the terms:
-49 + 42s + 9s2 = 0

Solving
-49 + 42s + 9s2 = 0

Solving for variable 's'.

Begin completing the square.  Divide all terms by
9 the coefficient of the squared term: 

Divide each side by '9'.
-5.444444444 + 4.666666667s + s2 = 0

Move the constant term to the right:

Add '5.444444444' to each side of the equation.
-5.444444444 + 4.666666667s + 5.444444444 + s2 = 0 + 5.444444444

Reorder the terms:
-5.444444444 + 5.444444444 + 4.666666667s + s2 = 0 + 5.444444444

Combine like terms: -5.444444444 + 5.444444444 = 0.000000000
0.000000000 + 4.666666667s + s2 = 0 + 5.444444444
4.666666667s + s2 = 0 + 5.444444444

Combine like terms: 0 + 5.444444444 = 5.444444444
4.666666667s + s2 = 5.444444444

The s term is 4.666666667s.  Take half its coefficient (2.333333334).
Square it (5.444444448) and add it to both sides.

Add '5.444444448' to each side of the equation.
4.666666667s + 5.444444448 + s2 = 5.444444444 + 5.444444448

Reorder the terms:
5.444444448 + 4.666666667s + s2 = 5.444444444 + 5.444444448

Combine like terms: 5.444444444 + 5.444444448 = 10.888888892
5.444444448 + 4.666666667s + s2 = 10.888888892

Factor a perfect square on the left side:
(s + 2.333333334)(s + 2.333333334) = 10.888888892

Calculate the square root of the right side: 3.299831646

Break this problem into two subproblems by setting 
(s + 2.333333334) equal to 3.299831646 and -3.299831646.

Subproblem 1

s + 2.333333334 = 3.299831646 Simplifying s + 2.333333334 = 3.299831646 Reorder the terms: 2.333333334 + s = 3.299831646 Solving 2.333333334 + s = 3.299831646 Solving for variable 's'. Move all terms containing s to the left, all other terms to the right. Add '-2.333333334' to each side of the equation. 2.333333334 + -2.333333334 + s = 3.299831646 + -2.333333334 Combine like terms: 2.333333334 + -2.333333334 = 0.000000000 0.000000000 + s = 3.299831646 + -2.333333334 s = 3.299831646 + -2.333333334 Combine like terms: 3.299831646 + -2.333333334 = 0.966498312 s = 0.966498312 Simplifying s = 0.966498312

Subproblem 2

s + 2.333333334 = -3.299831646 Simplifying s + 2.333333334 = -3.299831646 Reorder the terms: 2.333333334 + s = -3.299831646 Solving 2.333333334 + s = -3.299831646 Solving for variable 's'. Move all terms containing s to the left, all other terms to the right. Add '-2.333333334' to each side of the equation. 2.333333334 + -2.333333334 + s = -3.299831646 + -2.333333334 Combine like terms: 2.333333334 + -2.333333334 = 0.000000000 0.000000000 + s = -3.299831646 + -2.333333334 s = -3.299831646 + -2.333333334 Combine like terms: -3.299831646 + -2.333333334 = -5.63316498 s = -5.63316498 Simplifying s = -5.63316498

Solution

The solution to the problem is based on the solutions from the subproblems. s = {0.966498312, -5.63316498}

See similar equations:

| y+(-28)=-44 | | 2x^2+102x-106=0 | | (40x+15x)52=70000 | | 1+x/2=1x/3 | | 40x+15x=70000 | | 0.2[x+3]=0.6[x-3] | | 0.2[3x-4]=1 | | 10cos(2x-1.5)=7 | | 0.4x=5.1-1.3x | | 0.8x-2=0.6x-3 | | c^2+13c+40=0 | | 5x-1=3[2-x]+9 | | x-4[2x-7]=3x-2 | | 4[x+3]=x+6 | | -[x-5]=4[x-5] | | 8-[3x-3]=18 | | 3[2x-3]=x+1 | | 5[x+3]=4-[x-5] | | (40x+7.5x)52=70000 | | t(7+1)=0 | | (2*x+1)/x+4+x/(2*x+1)=8.02 | | x+1/3-5=-3x/2 | | 3[x-2]=2[3x+6] | | 2x-3[x-1]=2 | | 3[x-2]=5x+8 | | 4x+18=10x+90 | | 9+y=27 | | -5+6w=43 | | 7x+3x=10 | | (((24/35)/(6/7+5/9))*(3/4)) | | (((24/35)/(6/7+5/7))*(3/4)) | | ((24/35)/6/7+5/7)*(3/4) |

Equations solver categories